当前位置:首页 > 振荡水柱装置波浪水槽试验中用于模拟非线性能量俘获系统的孔口特性-上海精宏实验设备有限公司

振荡水柱装置波浪水槽试验中用于模拟非线性能量俘获系统的孔口特性-上海精宏实验设备有限公司

[导读]在振荡水柱装置研究中, 通常通过不同的孔口几何特征来改变能量俘获系统的特性, 但其具体流动特性却鲜有报道。本文探讨孔口几何特征 (形状、尺寸和开孔率等) 对流动特性的影响机制,

目的:在振荡水柱装置研究中, 通常通过不同的孔口几何特征来改变能量俘获系统的特性, 但其具体流动特性却鲜有报道。本文探讨孔口几何特征 (形状、尺寸和开孔率等) 对流动特性的影响机制, 理解影响能量俘获系统特性的关键因素, 研究其对振荡水柱装置水动力特性和波能提取的影响规律, 并评估波能提取性能指标的有效性。创新点:1.提出了两点测量法来重构振荡水柱腔室内液面;2.建立了孔口流动特性与孔口几何特征的关系式;3.提出了仅测量腔室内气压即可获得波能提取功率的方法;4.该方法可扩展至非二维矩形腔室及斜向波。方法:1.采用不同尺寸狭缝孔和圆形孔来模拟非线性能量俘获系统;2.通过一系列波浪水槽试验, 对振荡水柱装置的水动力特性及波能的提取展开研究;3.采用二次损耗系数和收缩系数来描述孔口往复流动特性, 并构建其与孔口几何特征的关系;4.通过两点测量法获取振荡水柱腔室内的准确信息;5.评估压力波动系数和液面放大系数作为振荡水柱装置波能提取性能指标的有效性。结论:1.两点测量法能够重建二维矩形振荡水柱腔室内液面的瞬时空间分布, 消除了单点法的测量偏差;2.孔口相对厚度及振荡气流对可被视为薄壁的圆形孔的影响可以忽略不计, 但对不能视为薄壁的狭缝孔的影响显著;3.本文提出的二次损耗系数经验公式可用于 (1) 通过孔口几何尺寸设计其流动特性和 (2) 通过仅测量腔室内气压来计算波能提取功率;4.用作振荡水柱装置的波能提取性能指标时, 压力波动系数比液面放大系数更为可靠。


1 Introduction
Marine renewable energy could potentially provide around one million jobs by 2030 and contribute about 7%of global electricity production by 2050 (Esteban and Leary, 2012) .However, utilization of marine renewable energy is facing not only great opportunities but also considerable difficulties.Research and development are still needed to make marine renewable power plants economically competitive with traditional coal-burning power plants.Wave energy is one kind of marine renewable energy with a bright future and is increasingly receiving attention in more and more countries (Falcão, 2010) .Wave power resources are abundant in many regions (Iglesias and Carballo, 2009;Stopa et al., 2011) , and the capacity of a wave power plant could be potentially comparable to that of a conventional power plant (Mei et al., 2005) .Besides large-scale power generation, utilization of wave power is also a favorable way to meet the electricity supply for islands (Fadaeenejad et al., 2014;Veigas and Iglesias, 2014) .
Marine renewable energy sources include offshore wind energy, current energy, ocean thermal energy, and wave energy.Recently, energy harvesting based on flow-induced vibrations has also been an emerging technology for marine renewable energy capture (Dai et al., 2015;Rostami and Armandei, 2017) .In comparison, wave energy conversion is still in its infancy and has diversified technologies (Zhang et al., 2012a;Zheng et al., 2015;Ning et al., 2016a) .Among the wide variety of wave energy converters, oscillating water column (OWC) devices take a leading position in research and development, and are considered as the technologies that could first achieve commercialization (Heath, 2012) .A typical OWC device is a hollow pneumatic chamber with a large bottom opening under the water level and an air turbine (a power take-off mechanism) above the water level for electricity generation.Air is trapped inside the pneumatic chamber above the water column;the incoming waves cause the internal water column to oscillat

相关文章